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Abstract. We present an interpretation of the She-Lévêque model in fully developed turbulence based on
order statistics. Turbulent behavior at large values of the Reynolds number is often studied through the
scaling behavior of moments of the distribution of the velocity differences and of the energy dissipation.
The present interpretation leads to a derivation of the scaling exponents ζp and τp of these moments,
without any postulate about a universal relation over the fluctuation structures such as the one used
by She and Lévêque. The interpretation is based on the fact that the hierarchy of fluctuation structures
imposes statistical constraints, whereupon the order p itself is seen as a random variable. As proposed by
She and Lévêque, the hierarchy of the structures is such that the structures of larger order affect locally
lower order structures through an entrainment process. This phenomenon leads to the Fisher-Tippett law,
one of three asymptotic distributions for the extreme value of a random sample as the size of the sample
grows to infinity.

PACS. 47.27.Jv High-Reynolds-number turbulence – 02.50.-r Probability theory, stochastic processes, and
statistics

1 Introduction

For the last sixty years or so, the phenomenological study
of fully developed turbulence has evolved from the cele-
brated work of Kolmogorov [1] to the recent general ac-
ceptance that significant discrepancy from his early work
exists, the effect known as intermittency. This effect only
appears when rare outlier events occur, forcing the need
for gigantic statistics in order to be established prop-
erly. The study of scaling exponents (of high-order mo-
ments) of the velocity increments constitutes the obvi-
ous path in quantifying the presumed discrepancies. The
scaling behavior of the longitudinal velocity increments,
δvl = v(x + l) − v(x), is expressed as

〈|δvl|p〉 ∼ lζ(p). (1)

The Kolmogorov refined similarity hypothesis [2] links the
behavior of ζ(p) to the scaling behavior of the energy dis-
sipation over a ball of size l, εl, through the following
relation:

〈|δvl|p〉 ∼ 〈εp/3
l 〉lp/3. (2)

Defining τ(p) as the scaling exponent of εl, the relation
becomes

ζ(p) = p/3 + τ(p/3). (3)
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The original work of Kolmogorov [1] (later referred to as
K41) led to the prediction that εl was independent of l,
with the obvious consequences that τ(p) = 0 and ζ(p) =
p/3. The observed discrepancies from this behavior of the
scaling exponents are referred to as intermittency [3,4].
The term indicates the fact that non-linear corrections to
ζ(p) originate from intermittent behavior of the energy
dissipation.

Over the past thirty years a number of phenomeno-
logical models have been proposed in order to account
for non-linear corrections to ζ(p) [5,6]. Perhaps the most
“popular” model was proposed ten years ago by She and
Lévêque [7]. It won notoriety not only because it best fits
experimental data for large values of p [8], but mostly be-
cause it relies on an interesting physical picture that leads
in a somehow natural fashion to an explicit form for the
scaling exponents, namely τ(p) = −2p/3 + 2[1 − (2/3)p].
Dubrulle [9] put this model in the context of log-infinitely
divisible cascade models [9–12] and realized that this form
of τp corresponds to a log-Poisson distribution along the
steps of the cascade. This was presented independently by
She and Waymire [12]. However the She-Lévêque model
relies on a ad hoc postulate of this explicit form. This
postulate can be interpreted as the symptom of a missing
link between a valid physical model (which includes con-
straints that have not been recognized yet) and a large set
of experimental results.

The intent of this study is to provide this missing link
through a statistical argument from which the explicit
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form for the scaling exponents can be derived rather than
postulated.

In Section 2 we give a brief presentation of the She-
Lévêque model. Section 3 investigates the underlying sta-
tistical constraint imposed by the She-Lévêque model that
leads to the explicit form for τ(p) and ζ(p). In Section 4
a more general result is obtained from fewer hypothesis
than in the She-Lévêque model.

2 The She-Lévêque model

The model proposed by She and Lévêque [7] characterizes
the energy dissipation field εl using a hierarchy of fluc-
tuation structures ε

(p)
l defined by the ratio of successive

moments of εl, i.e.

ε
(p)
l =

〈εp+1
l 〉
〈εp

l 〉
. (4)

The two extreme structures ε
(0)
l and ε

(∞)
l correspond

respectively to the mean fluctuation structure ε̄ and to fil-
aments [13,14], in view of the two-fluid model [15]. Inter-
mediate values of p thus represent more or less organized
fluid structures, perhaps ribbon or sheetlike.

It is argued in the She-Lévêque model that the filamen-
tary structures ε

(∞)
l scale like l−2/3. From the definition

of τ(p), this amounts in stating that as p → ∞,

τ(p + 1) − τ(p) → −2/3, (5)

hence τ(p) → −2p/3 + C. Using Legendre transform the
constant C is readily seen as the codimension [5] of the
high intensity structures (filaments), hence C = 3−1 = 2.

Perhaps the most important part of the model lies in
the assumed interaction between structures of different or-
der. She-Lévêque propose that the fluctuation structures
ε
(p)
l form a hierarchy in the sense that high order struc-

tures entrain lower order ones nearby. This phenomenon
is explained in greater detail in the next section.

From the supposed hierarchy of those structures, they
postulate the following relation between structures of ad-
jacent order:

ε
(p+1)
l = Apε

(p)
l

β
ε
(∞)
l

1−β
. (6)

From equations (4, 6), we get the following expression
for τp, the scaling exponent of 〈εp

l 〉:

τp+2 − (1 + β)τp+1 + βτp +
2
3
(1 − β) = 0. (7)

The most intermittent structures ε
(∞)
l scales like l−2/3,

which in returns implies that τp must be of the form τp =
−2/3p + 2 + f(p), where f(∞) = 0. We can then rewrite
equation (7) as

f(p + 2) − (1 + β)f(p + 1) + βf(p) = 0. (8)

This last expression has f(p) = αβp as its only non-
trivial solution, and boundary conditions on τp (namely
τ0 = τ1 = 0) leads to

τp = −2
3
p + 2

[
1 −

(
2
3

)p]
. (9)

Although the derivation of the form of τp starting with
equation (6) is straightforward, the latter was postulated
in a somewhat ad hoc fashion. Bear in mind that this form
of τp corresponds to a log-Poisson cascade [9,12]. However
the form of τp was obtained by She and Lévêque without
requiring the cascade through scales picture.

In the next section we propose a statistical interpreta-
tion of the She-Lévêque model which shows that the un-
derlying physics of the model forces the universal scaling
behavior without having to formulate a postulate regard-
ing its explicit form, given by equation (6). Still no explicit
formulation of the cascade picture is required, staying in
the same line as the She-Lévêque model.

3 The order parameter as a hidden variable

In this section we propose an interpretation of the hierar-
chy of fluctuation structures that we believe was implicitly
present in the original work of She and Lévêque. It appears
that the order p of a structure can be seen as an index of
different dynamical modes of dissipation. High values of p
correspond to more coherent modes. This notion is explic-
itly stated in [7]. We propose that p should be interpreted
as a random variable itself. Our plan is then to interpret
the She-Lévêque model in order to obtain constraints on
the distribution of p. This idea is useful provided that
one can relate p to the dissipation through a conditional
probability, in such a way that the form of τ(p) can be
obtained.

We focus on an additional comment made by She and
Lévêque in [7]. They indicate that the intensities of the
fluctuation structures can be rewritten as:

ε
(p)
l =

∫
εp+1

l P (εl)dεl∫
εp

l P (εl)dεl
=

∫
εlQp(εl)dεl, (10)

where P (εl) is the probability density function (pdf) of εl

and

Qp(εl) =
Pεl

(εl) · εp
l

〈εp
l 〉

. (11)

Obviously Qp(εl) are also valid pdfs of εl, for which the
intensities ε

(p)
l are the mathematical expectations. Let us

look at Qp in more details. If we inspect the behavior of
Qp for dissipation values which scale with exponent h(p),
i.e. for εl = ε0 ·lh(p), where h(p) is the singularity exponent
associated to p in the multi-fractal formalism, one gets

Qp(ε0 · lh(p)) ∼ Pεl
(ε0 · lh(p)) · lp·h(p)−τ(p). (12)

Since the fractal dimension F (h(p)) for the sup-
port of singularities of exponent h(p) is given by
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F (h(p)) = p · h(p) − τ(p), we can view Qp as the
nondimensionalized pdf (in a fractal sense) of the dissipa-
tion for a given scaling exponent h(p). This interpretation
was not formulated in those terms in [7]. Note that this
last expression is only valid in the limit l → 0.

From this point of view, it then seems natural to look
at this family of pdfs as conditional distributions of εl

over the value of a hidden parameter p. We believe this
is a more formal understanding of the She-Lévêque hier-
archy of fluctuation structures and that this notion was
implicitly present in their work.

However, it is not possible to simply interpret Qp(εl)
as the conditional distribution of the dissipation at a fixed
value p = p0. Indeed, by Bayes’ theorem:

Pεl|p=p0(εl) =
Pεl

(εl) · Pp|εl
(p0)

Pp(p0)
. (13)

Assuming Qp0(εl) = Pεl|p=p0(εl) would imply that

Pp|εl
(p) =

(
εp

l

〈εp
l 〉

)
· Pp(p). (14)

This last expression cannot be normalized independently
of εl, regardless of the form of Pp(p). Hence Pp|εl

(p) is not
a valid pdf in this case.

However, we note that for p = 0 we have Q0(εl) =
Pεl

(εl), i.e. the marginal distribution of εl itself. This
seems to indicate that the condition would rather be ex-
pressed as p ≥ p0 instead of p = p0, such that the
case p0 = 0 involves no condition at all and falls back
on the marginal distribution Pεl

(εl). Coming back to
the conditional distribution picture, we translate this re-
mark in probabilistic term by assuming that Qp0(εl) =
Pεl|p≥p0(εl).

Reformulating Bayes’ theorem, the conditional proba-
bility respects the following relation:

Pεl|p≥p0(εl) =
Pεl

(εl) · (1 − P̄p|εl
(p0))

1 − P̄p(p0)
, (15)

where P̄ (·) is the cumulative density function (cdf) of the
subscript variable.

It is tempting to reassemble equation (11) and equa-
tion (15) such that 1 − P̄p|εl

(p) = εp
l . However this last

expression does not qualify as a cdf as it is not prop-
erly normalized. In fact it can even grow to infinity as
p → ∞. Note that we can multiply both the numerator
and the denominator in equation (11) by any constant, or
even any function of p without altering the form of Qp.
The She-Lévêque model also assumes that (for finite l) the
distribution of εl is bounded above by some value ε

(∞)
l .

Writing 1 − P̄p|εl
(p) = (εl/ε

(∞)
l )p ensures that the cdf

properly goes to one as p → ∞, without affecting Qp(εl).
Correspondingly, we will have that

1 − P̄p(p) =
〈εp

l 〉
(ε(∞)

l )p
(16)

for the marginal distribution of p. Equation (16) is all that
we will need in order to derive an explicit expression for

τ(p); we consider equation (16) as the starting point for
the derivation presented in the next sections.

Before we move on, we add a comment concerning the
last expression. We might expect the cdf of p to scale as
−F (h(p)), assuming a one-to-one correspondence of p with
h(p). But this is not the case, as pointed out in [7]: the
expected value of Qp, ε

(p)
l , rather scales as

τp+1 − τp =
∫ p+1

p

τ ′(p) (17)

=
∫ p+1

p

h(p) (18)

∼ h̄(p). (19)

The probability Pp(p) scales as

τ(p) − C∞ · p = −F (h(p)) + (h(p) − C∞) · p. (20)

Note however that for p → ∞, h̄(p) → h(p) and Pp(p)
also behaves accordingly as it tends towards −F (h(p)).
This is in agreement with the picture of poorly organized
structures of low order, where h̄(p) represents an average
scaling behavior. As p grows, one can show that the vari-
ance of Qp(εl) tends to zero such that the identification
h(p) becomes asymptotically valid.

4 Statistical behavior of the hierarchical
dynamics

One fundamental aspect of the She-Lévêque model lies
in their proposed hierarchical dynamics of the fluctua-
tion structures ε

(p)
l . She and Lévêque observe that the

hierarchy of structures is the result of an entrainment
process whereas high-order structures “constantly entrain
surrounding, less ordered fluid elements”. Hence the dy-
namics that they propose is one of the survival of the fittest
over the fluctuation structures ε

(p)
l .

In Section 3 we have related the distribution of the
order p to the moments 〈εp

l 〉 through an hypothesis on the
conditional distribution of the dissipation over the order p.
We have implicitly assumed that the order p, just like the
dissipation, is a random field over space, time and scale,
such that we should write equation (16) more formally as:

Pr(pl(x, t) ≥ p0) =
〈εp0

l 〉
(ε(∞)

l )p0
. (21)

We now come back to the survival of the fittest dynam-
ics. The She-Lévêque model includes an explicit statement
on the behavior of this entrainment process: since larger
order structures quickly absorb lower order ones nearby,
it is very unlikely that any structure of a given order p
can be found spatially close to a structure of order much
larger than p. Similarly in time it is very unlikely that a
small order p manifests itself when there was a large order
structure around an instant before.
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Hence according to this picture the probability of hav-
ing a p-order structure at a given point (x, t) in space and
time is proportional to the probability of the maximum
structure order found in a spatial and timewise neigh-
borhood (of (x, t)) being close to p. This imposes strong
constraints on the possible statistical distribution of the
structures.

Precisely it means that the following can be written
about the distribution:

Pr(pl(x, t) = p0) ∼ Pr( max
(x′,t′)∈Bl(x,t)

pl(x′, t′) = p0) (22)

where {(x′, t′) ∈ Bl(x, t)} is some neighborhood around
(x, t). Looking at pl(x, t) as a random field, the constraint
then tells us that the pointwise probability distribution
function (pdf) of pl(x, t) must be invariant when replaced
by the pdf of its maximum value in a neighborhood of any
point (x, t). Again it means that some time before there
could not have been structures of order much higher than
p around. However it allows for the entrainment process.
This is in perfect agreement with the She-Lévêque model.
Note that random injection of energy alters this process;
still if a steady-state is reached, then it should obey the
constraint described above.

4.1 Long-range correlations

At this point, we need to elaborate on correlation issues.
The argument presented above implicitly assumes that
there is no long range correlation between the structures.
This seems wrong since we expect that the typical long
range correlations of the velocity and dissipation fields
should manifest themselves.

A well-known trick to manage long-range correlations
is to regroup the statistics in appropriately chosen “quan-
tiles” which are strongly correlated, such that the quan-
tiles amongst themselves are no longer long-range corre-
lated, see for instance [16]. Conveniently enough, this is
just what the parameter p does: it separates the dissipa-
tion distribution in structures with well-defined expected
values ε

(p)
l for large values of p. For small values of p, bear

in mind that Qp represents all structures with p′ > p (such
that the ε

(p)
l are not expected to represent a given value of

p); note also that small values of p correspond to poorly
organized structures, i.e. with behavior similar to white
noise, thus uncorrelated. In our mind, this last comment
expresses the reason that lies beneath the pertinence of
the hierarchy of structures presented by She and Lévêque.

Still this does not mean that the structures are com-
pletely uncorrelated. Indeed they must be according to
the assumed entrainment process, yet this interaction (al-
though “non-linear”) remains short-ranged.

Let us now see what actual form of the pdf of p can be
expected.

4.2 Max-stable laws

It is a well-known result in order statistics that there
are only three forms of asymptotic distributions that

respect equation (22) when the number of elements
amongst which the maximum is taken is arbitrarily large.
Indeed this is just the case here: not because it can be
assumed that the neighborhood is of a very large extent
spatially (which would require that a very large number
of structures can affect a given structure at a fixed time),
but simply because the effect of taking maxima values as
time goes by leads to the asymptotic distribution, i.e. the
steady-state. Formally, we have the following result about
these distributions:

Proposition 1 The cumulative distribution function
(cdf) of the maximum value p of N sampled i.i.d. random
variables must approach as N → ∞ (under some mild con-
ditions expressed later in this section) one of three forms
of asymptotic distributions [17], namely

Λ1(p) = exp(−p−α), p > 0; (23)
Λ2(p) = exp(−(−p)α), p ≤ 0; (24)
Λ3(p) = exp(−e−p), −∞ < p < ∞, (25)

where α > 0, and p is defined up to translation and scaling
parameters.

We give here a short intuitive derivation of this result for
self-containment sake, but refer the reader to [17] for a
thorough discussion, and to [18] for a formal proof. We
follow closely the discussion given in [17], which was orig-
inally introduced by Fisher and Tippett [19].

Consider taking the maximum value in a sample of
N = mn; this amounts in taking maximum values in n
different subset (each containing m samples), then tak-
ing the maximum of those n values. Obviously we need
both distributions to converge to the same form Λ(p) as
m → ∞. Since n remains finite, we use the fact that
the cdf of the maximum value of n i.i.d. random variables
with cdf Fp(p0) ≡ Pr(p ≤ p0) is given by (Fp(p0))n, as
each of the n values have to be smaller than p0 for the
maximum to be too. Therefore the asymptotic distribu-
tion Λ(p) must be such that

Λn(anp + bn) = Λ(p). (26)

These asymptotic distributions play the same role for or-
der statistics as the normal distribution for the sum of
random variables, i.e. it is in most aspects analogous to
the central limit theorem. Here an > 0 and bn are suit-
ably chosen normalization constants, just like the sum of
n i.i.d. variables must be centered, and normalized by n in
order to converge to a standard normal distribution. It is
now easily checked that the three form of Λ(p) presented
above are the only solutions to equation (26) (see [17]).

When some minimal conditions on the underlying dis-
tribution are respected, the extremal value will converge
to one of the three forms above; there exist known condi-
tions on the underlying distribution (from which the max-
imum is taken) stating which one of the three forms is the
asymptote, although in most cases it converges to the third
form as conditions for convergence to the first two forms
are more restrictive. These conditions were obtained by
Gnedenko [18] and are given here in terms of the cdf P (x)
of the underlying distribution.
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Proposition 2 P (x) belongs to the domain of attraction
of Λ1 if and only if

lim
x→∞

1 − P (x)
1 − P (kx)

= kα, (27)

for every k > 0.

Proposition 3 P (x) belongs to the domain of attraction
of Λ2 if and only if there exists an x0 such that

P (x0) = 1 and P (x0 − ε) < 1 (28)

for every ε > 0,
and if and only if

lim
x→0−

1 − P (kx + x0)
1 − P (x + x0)

= kα, (29)

for every k > 0.

In essence, these conditions are equivalent to a power-
law behavior of the tail of the cdf. We note that distribu-
tions which fall into the Λ1 domain are unlimited on the
right, while they are limited for Λ2. Distributions belong-
ing to the Λ3 domain can occur in both cases; the formal
conditions for Λ3 are more intricate, but a sufficient con-
dition in the case where P (x) is unlimited on the right is
given here.

Proposition 4 P (x) belongs to the domain of attraction
of Λ3 if it is less than 1 for every finite x, it is twice
differentiable for at least every x greater than some x′ and
it respects:

lim
x→∞

d

dx

[
1 − P (x)

P ′(x)

]
= 0. (30)

It is trivially checked that any exponential form belongs
to the domain of attraction of Λ3.

Figure 1 shows the evolution of the distribution of the
maximum of N gaussian variables with mean µ = 0 and
variance σ2 = 1 as the number of variables N grows. The
gaussian distribution is one example of an underlying dis-
tribution that has Λ3 has its asymptote for the maximum
value in a sample.

Λ1(p) and Λ2(p) are known as Weibull and Fréchet
distributions, respectively; their stretched-exponential be-
havior is reminiscent of the pdf for velocity increments at
small scales [5]. We begin by considering only the third
form Λ3(p), and will come back to the two others later on.

4.3 Form of τ(p)

In Section 3 we have related the moments 〈εp
l 〉 to the cdf

of p; from our interpretation of the entrainment process
proposed by She and Lévêque we derived three possible
forms for this cdf. This allows us to obtain specific forms
for the dissipation scaling exponent τ(p).

We assume for now that Λ3(p) is the proper distribu-
tion for p. Λ3(p) is known as the Gumbel distribution; it

−2 −1 0 1 2 3 4 5
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1.2
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N=1000 

Fig. 1. Normalized histograms of the maximum value of N
gaussian variables for N = 2, 5, 50, 200, 1000, along with the
corresponding theoretical Λ3 pdfs. For N = 2 the histogram
is almost gaussian, as expected, while it tends to the asym-
metrical Λ3 form for higher values of N . Note the relatively
slow convergence to the theoretical curves; this is characteris-
tic of the gaussian law. Maxima of an exponential law converge
faster. Each curve involves 100,000 realizations.

is a special case of the larger class of Fisher-Tippett dis-
tribution, with additional parameters for translation and
scaling of its argument. From equations (21) and (25) we
can write

〈εp
l 〉 = (ε(∞)

l )p ·
[
1 − exp(−e−(ap−b))

]
, (31)

where a and b may depend on l. We define C∞ as

ε
(∞)
l ∼ lC∞; (32)

She and Lévêque assumed that C∞ = −2/3. Hence for
τ(p) we have

τ(p) = C∞ · p + lim
l→0

log
[
1 − exp(−e−(ap−b))

]
log(l)

. (33)

We are interested in the behavior of this limit. Note first
that the double exponential term takes values between 0
and 1. Any limit value other than 1 for this double expo-
nential forces the limit of the ratio to zero, since the log(l)
term will dominate. This leaves only the linear term, thus
in this case τ(p) would be a linear function of p. If the dou-
ble exponential does indeed converge to 1, we can expand
it in its Taylor series around −e−(ap−b) = 0, resulting in

τ(p) = C∞ · p + lim
l→0

−(ap − b)
log(l)

. (34)

The limit in this case is non-trivial only if a or b are pro-
portional to log(l), in which case the behavior for τ(p) is
still limited to a linear form.

Similar arguments hold also for the two other max-
stable asymptotes, Λ1 and Λ2.

At first, this comes as a bit of a disappointment
since we expected to recover non-linear behavior for τ(p).
Bluntly put, this is due to the presence of the 1 − P̄ (p)
term rather than P̄ (p), whereas the double exponential
term could then yield exponential behavior for τ(p). We
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would need a double exponential behavior of 1 − P̄ (p)
for this to be true. This is just the case with min-stable
distribution. Indeed, from the fact that taking the mini-
mum amounts to take the maximum after sign reversal,
one readily sees that

P̄min(p) = 1 − P̄max(−p). (35)

Before we discuss what meaning could take a min-stable
distribution for p, we inspect some interesting results that
are obtained with this distribution in the present context.

4.4 Obtaining the She-Lévêque universal scaling law
from the (min-stable) Fisher-Tippett distribution

We now present a derivation of the She-Lévêque universal
scaling law from a min-stable constraint on the distribu-
tion of structures.

Still working with Λ3, the cdf of p is such that 1 −
P̄ (p) = exp(−eap−b). Using equation (21), the intensity of
p-order structures can then be written as

ε
(p)
l =

〈εp+1〉
〈εp〉 (36)

=
(ε(∞)

l )p+1 · exp(−eap−b)ea

(ε(∞)
l )p · exp(−eap−b)

(37)

= ε
(∞)
l · exp(−eap−b)

ea−1
. (38)

We can now derive the following expression for ε
(p+1)
l

with respect to ε
(p)
l :

ε
(p+1)
l = ε

(∞)
l · exp(−ea(p+1)−b)

ea−1
(39)

= (ε(∞)
l )1−ea · (ε(p)

l )ea

. (40)

But this is equivalent to equation (6) with β = ea and
Ap = 1. Since β = 2/3 in the context of the She-Lévêque
model [7], we get a = log(2/3), independent of l. Of course
Ap is also independent of l. Hence we have obtained (6)
from a simple order statistics argument, rather than hav-
ing to postulate it1.

It seems however that we have cheated by switching
from a max-stable to a min-stable law. While we delay
the full discussion to Section 5, we make the following
comment to sooth the reader’s discomfort. Even though
the scaling law was postulated by She and Lévêque based
upon the idea of an entrainment process, there is nothing
that says, in its explicit formulation in equation (6), who
“wins the battle” between the highly and the poorly or-
ganized structure. We shall make a stronger statement in
Section 5. For now, we take a more general look at stable
laws.

1 Finally we also have that ε
(0)
l must not depend on l, such

that

b = − log(− log(l2/3)) = − log(2/3) − log(− log(l)). (41)

Here l is non-dimensionalized by division by the integral scale
l0, such that l runs from 1 to 0.

4.5 General study of the three asymptotic forms

We have just showed that we can obtain the She-Lévêque
universal scaling law without having to postulate it, but
rather from first principles based on order statistics and
from some fundamental hypothesis forming the model.
The main hypothesis was that there exists an entrain-
ment process over the order p of the structures ε

(p)
l . We

have replaced max-stable by min-stable statistics; we have
also made the (unjustified) additional hypothesis that Λ3

was the proper distribution of the extreme. In this section
we will obtain more general results relying solely on the
entrainment process, and on the independence of ε̄ = ε

(0)
l

over scale, for which there is strong experimental evidence.
In the She-Lévêque model, equation (6) was used to de-

rive the behavior of exponent τ(p); the She-Lévêque model
did not provide any explicit expression for the moments
〈εp

l 〉, such as the one we just derived in equation (16),
which we rewrite as

〈εp
l 〉 = (ε(∞)

l )p · (1 − P̄ (p)). (42)

For Λ3, we readily see that this leads to

τ(p) = C∞ · p + lim
l→0

log(exp(−e−(ap−b)))
log(l)

(43)

= C∞ · p + lim
l→0

−e−(ap−b)

log(l)
, (44)

which, for proper scaling of a and b, gives the non-trivial
form:

τ(p) = C∞ · p − e−(a0p−b0). (45)

By proper scaling, we mean a = a0 (independent of l) and
b = b0 − log(− log(l)), with a0 = b0 = − log(2/3) in the
She-Lévêque model.

We now come back to the two other asymptotic forms,
Λ1 and Λ2. The cdf for the second form is

Λ2(ap − b) = 1 − exp(−(ap − b)α), (46)

where α > 0 and ap − b > 0. Λ2(ap − b) is equal to 0 for
ap − b ≤ 0.

We can write the following for τ(p) in this case:

τ(p) = C∞ · p + lim
l→0

(−(ap − b)α

log(l)

)
. (47)

For α > 1, even with proper scaling of a and b, this
forms leads to a non-concave form for τ(p), which we dis-
card. For 0 < α < 1, we have the following form τ(p):
τ(p) = C∞.p + a0p

α. However, this form does not corre-
spond to structures of codimension C = 2 for p → ∞ due
to the sublinear term a0p

α.
Finally, for the Λ1 form the normalizing rule is such

that for positive values of p only a linear behavior of τ(p)
is admissible. Hence, for both Λ1 and Λ2 forms, the only
admissible behavior is K41.

Remark: Note that if we assume a standard averag-
ing dynamics on the structures such that Pp(p) is simply
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gaussian, then with proper scaling of the mean µ and the
variance σ2 we obtain the log-normal model. However in
this case we no longer have that h(p) → C∞ as p → ∞.
Thisi s important since there is still a debate concerning
whether or not there really exists experimental evidence
that the scaling behavior of the dissipation differs from
the log-normal model, see for instance [20].

5 Discussion and conclusion

We have presented a statistical interpretation of the She-
Lévêque model allowing the derivation of the universal
scaling law that was postulated in [7]. This derivation re-
lies on constraints that must be respected by the system
in order to behave dynamically as proposed in the She-
Lévêque model. The constraints impose for the pdf of the
structure order p to be one of three admissible asymptotic
distributions for the maximum value in a neighborhood of
a point. Out of those three valid distributions the Fisher-
Tippett law is known to play a pre-eminent role because of
its softer convergence conditions. The Fisher-Tippett law
also happens to allow for the derivation of the conjectured
scaling behavior of the energy dissipation as found in the
work of She and Lévêque.

In the process, we have moved from max-stable to min-
stable laws. We shall try to explain why it is necessary to
do so here. As we mentioned earlier, the entrainment pro-
cess does not tell us, per say, who wins the battle when it
takes place. While the picture we have in mind is one of
the most organized structures “dragging” along less orga-
nized fluid elements, it might very well be that the result of
this process is to exhaust the structure of higher order. In
other words, in the limit of large number of structures the
entrainment process might be seen as a thermodynamical
interaction, which should always favor entropy, i.e. struc-
tures indexed by lower p. This effect would be balanced
by an intrinsic tendency to form structures, through the
minimization of some generalized energy. This needs ex-
perimental validation.

All results were obtained by considering the en-
trainment process proposed originally by She and
Lévêque, then describing its effect in terms of sta-
tistical constraints imposed on the intensity ε

(p)
l of

fluctuation structures. Obviously the entrainment pro-
cess itself is understood as an additional hypothesis
on the phenomenology of fully developed turbulence.
Ideally this hypothesis could be understood as the
manifestation of a hidden symmetry of the Navier-Stokes
equation. As presented above the entrainment process
amounts to invariance of a solution under replacement
by the minimum in a neighborhood. This transfor-
mation can be loosely interpreted (for a scalar field) as

a local translation in the direction opposite to the gra-
dient, since the local minimum is bound to be found in
this direction. Local maxima, minima and saddle points
appear as fixed points of this transformation. Perhaps an
additional symmetry of the Navier-Stokes dynamics could
be formulated in a similar fashion.

The question also arises of how this could be verified
experimentally, or at least on numerical data. We would
like to propose a “regional” estimation of the moments
〈εp

l 〉, and then use equation (16) to build the cdf of p.
A proper definition of this estimation procedure is not
trivial, and is the subject of ongoing work.

The author would like to thank Alain Arnéodo, Jean-Marc
Lina and Frédéric Lesage for useful comments. The author also
acknowledges insightful comments by the referees who revised
a prior version of this paper.
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